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Equation (1) is described by fitFunc(), but in order to construct − lnL, where
L is the likelihood it has to be brought to the form:
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For squaring following formulas are used:

If ai and αi are real:
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in general, helicity amplitudes are complex numbers, so, if zi = ai + ibi and
let’s also put some xi real functions in general calculation (which represent the
wigner d functions in our distribution):
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Which results in
n(n + 1)
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members of sumation.
Finally we get:
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But, this is a lot of members of summation, whereas we have less independent
amplitudes, 9 for AλZλll

and 32 for T J
λZλγλqq

.


